ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE ELECTRICAL AND COMPUTER ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS

Course Title	Code	Semester	T+L Hours	Credit	ECTS
ADVANCED THEORY of POWER ELECTRONICS	ECE-506	SPRING	3 + 0	3	7,5

Prerequisite Courses NONE

Туре	Selective			
Language	English			
Coordinator	Prof. Irfan Alan			
Instructor	Prof. Irfan Alan			
Adjunt	None			
Aim	Detailed analysis of selected power electronic circuits; analytical analysis, system modelling, and simulation of operation of selected power electronic circuits by means of a simulation program.			
Learning Outcomes	 Learning and strengthening fundamental concepts faced in Power Electronics, Learning and strengthening the conversion techniques, design criteria, system modeling, simulation methods to analyze DC/DC converters and DC/AC inverters, Learning and strengthening the harmonic and loss reduction techniques in inverters, their advantages and disadvantages, selection of optimum operating frequency, new inversion techniques, Learning and strengthening forced commutation techniques, their operation principles, design criteria, system modeling, simulation methods to analyze related DC/DC converters and DC/AC inverters, Learning and strengthening operation principles of resonant power converters, design criteria, system modeling, analysis and simulation methods, Learning and strengthening operation principles of power factor adjustable rectifiers, design criteria, system modeling, analysis and simulation methods. 			
Course Content	 Fundamental concepts in Power Electronics DC Machine Drives E-Class Converter Operating Principles DC Motor Control with E-Class Converter Operating E-Class Converter as a DC/AC Inverter Harmonic Reduction Techniques in Inverters Voltage Source Inverters-VSI PWM Techniques, Advantages and Disadvantages New VSI Techniques, Advantages and Disadvantages Forced Commutated Converters and Inverters Forced Commutated Current Source Inverters-CSI Resonant Power Converters 			

WEEKLY TOPICS AND PRELIMINARY STUDY

Week	Торіс	Preliminary Study
1	Fundamental Concepts in Power Electronics: Fundamental component harmonics in DC and AC signals, Fourier expansion, THD, CHDF, VHDF, power factor, average-rms-peak values, operating losses of a switching device, converter losses	The relevant book chapters and materials from the literature
2	Fundamental Concepts in Power Electronics: Switching device and heat sink selection based on operating voltage, current, frequency and switching losses, selection of snubber and switching frequency	
3	DC Machine Drives, DC Machine Dynamics	The relevant book chapters and materials from the literature
4	4 Quadrant DC Machine Drive with E-Class Converter	The relevant book chapters and materials from the literature
5	Speed Regulated DC Machine Control with E-Class Converter, System Modeling and Simulation	The relevant book chapters and materials from the literature
6	Operating E-Class Converter as a DC/AC Inverter, Harmonic Reduction Techniques in Inverters, Voltage Source Inverter PWM Techniques Advantages and Disadvantages	The relevant book chapters and materials from the literature

7	A New Inversion Technique utilizing a Buck Converter and a Cascaded Inverter, Advantages and Disadvantages	The relevant book chapters and materials from the literature
8	A New Inversion Technique utilizing a Buck-Boost Converter and a Cascaded Inverter, Advantages and Disadvantages	The relevant book chapters and materials from the literature
9	Forced Commutated DC/DC Choppers, Operating Principles	The relevant book chapters and materials from the literature
10	MIDTERM EXAM	
11	Forced Commutated DC/DC Choppers, Operating Principles	The relevant book chapters and materials from the literature
12	Forced Commutated DC/AC Inverters, Operating Principles	The relevant book chapters and materials from the literature
13	Forced Commutated Current Source Inverters (CSI), Operating Principles	The relevant book chapters and materials from the literature
14	Resonant Power Converters, Types and Selection of Switching Devices	The relevant book chapters and materials from the literature
15	Resonant Power Converters, Types and Power Flow, Operating Principles, Simulation and Analysis	The relevant book chapters and materials from the literature
16	FINAL EXAM	

SOURCES	
Lecture Notes	Lecture notes and slides
Other Sources	Course Textbook: "Power Electronics, Circuits, Devices, and Applications", M.H. Rashid, 2 nd Edition, 1993, Prentice Hall, Inc. Additional Materials: 1. Advanced Continuous Simulation Language (ACSL) Programme User Manual

COURSE MATERIALS SHARING		
Documents Lecture notes and slides		
Homeworks Students will be given at least total of 7 analytical or simulation homeworks		
Exams	1 Midterm and 1 Final Exam	

E.

EVALUATION SYSTEM					
SEMESTER STUDY	NUMBER	CONTRIBUTION			
MIDTERM	1	30			
Homeworks	7	35			
FINAL EXAM	1	35			
TOTAL		100			

Course Category	
Sciences and Mathematics	50%
Engineering	50%
Social Sciences	0%

RE	RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS						
	o Program Qualifications		Contribution Level				
INO			2	3	4	5	
1	Skills of using Mathematical, Science and Engineering Knowledge in Advanced Research					x	
2	Skills of analyzing, designing and/or implementing an original system which will solve an Engineering Problem					x	
3	Skills of using software, hardware and modern measurement instruments for advanced					x	

	research in one's field of expertise		
4	Skills of planning, detailing and doing independent research		x
5	Skills of following literature, making and/or listening technical presentation, writing academic level article	x	
6	Skills of finding original ways by means of innovative thinking and questioning		x

*Increasing from 1 to 5.

ECTS / WORK LOAD TABLE							
Activities	Number	Duration (Hours)	Total Work Load				
Course Length (includes exam weeks: 16x total course hours)	16	3	48				
Out-of-class Study Time (Pre-study, practice)	16	5	90				
Internet search, library work, literature search	16	3	48				
Homework	7	13	91				
Midterm	1	15	15				
Final Exam	1	20	20				
Total Work Load			312				
Total Work Load / 30			312/30				
Course ECTS Credit			7,5				